题目内容

在锐角△ABC中,角A,B,C的对边的长分别为a,b,c,已知b=5,sinA=
7
4
S△ABC=
15
7
4

(I)求c的值;          
(II)求sinC的值.
分析:(I)由b的值和sinA的值,利用三角形的面积公式表示出三角形ABC的面积,让面积等于
15
7
4
得到关于c的方程,求出才的解即可得到c的值;
(II)由三角形为锐角三角形,得到A的范围,由sinA的值,利用同角三角函数间的基本关系即可求出cosA的值,然后由b,c和cosA的值即可求出a的值,再由c,a和sinA的值,利用正弦定理即可求出sinC的值.
解答:解:(I)由b=5,sinA=
7
4

S△ABC=
1
2
bcsinA=
15
7
4
,(2分)
可得
7
8
×5c=
15
7
4

解得c=6;(4分)
(II)由锐角△ABC中sinA=
7
4
可得:cosA=
3
4
,(6分)
由余弦定理可得:a2=b2+c2-2bc×cosA=25+36-60×
3
4
=16
,(8分)
有:a=4.(9分)
由正弦定理:
c
sinC
=
a
sinA
,(10分)
sinC=
csinA
a
=
7
4
4
=
3
7
8
.(12分)
点评:此题考查学生灵活运用正弦、余弦定理及三角形的面积公式化简求值,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网