ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2¹ýF1×÷²»ÓëxÖáÖØºÏµÄÖ±Ïßl1£¬ÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬Èô¡÷PQF2µÄÖܳ¤Îª4$\sqrt{2}$£®£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì
£¨2£©¹ýF1×÷ÓëÖ±Ïßl1´¹Ö±µÄÖ±Ïßl2£¬ÇÒl2ÓëÍÖÔ²C½»ÓÚµãM£¬NÁ½µã£¬ÇóËıßÐÎPMQNÃæ»ýµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ4a=4$\sqrt{2}$£¬¼°ÀëÐÄÂʹ«Ê½£¬a£¬b£¬cµÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±Ïßl1µÄбÂʲ»´æÔںʹæÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°ËıßÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬ÔÙÓÉ»ù±¾²»µÈʽ¼´¿ÉµÃµ½ËùÇó·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ4a=4$\sqrt{2}$£¬ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¼°a2=b2+c2£¬
½â·½³Ì¿ÉµÃa=$\sqrt{2}$£¬b=1£¬c=1£¬
¼´ÓÐËùÇóÍÖÔ²CµÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©ÈôÖ±Ïßl1бÂʲ»´æÔÚ£¬Ôò´Ëʱ|PQ|=$\sqrt{2}$£¬|MN|=2$\sqrt{2}$£¬
ËıßÐÎPQMNµÄÃæ»ýS=$\frac{1}{2}$|PQ|•|MN|=2£»
ÈôÖ±Ïßl1µÄбÂÊ´æÔÚÇÒ²»Îª0£¬Ôò¿ÉÉèl1£ºy=k£¨x+1£©£¬P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÁªÁ¢ÍÖÔ²·½³Ì£¬ÏûÈ¥yµÃ£¬£¨1+2k2£©x2+4k2x+2k2-2=0£¬
|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{\sqrt{£¨4{k}^{2}£©^{2}-4£¨2{k}^{2}-2£©£¨2{k}^{2}+1£©}}{1+2{k}^{2}}$•$\sqrt{1+{k}^{2}}$=2$\sqrt{2}$•$\frac{1+{k}^{2}}{1+2{k}^{2}}$£¬
ͬÀí£¬ÓÃ-$\frac{1}{k}$ ´úÌæk£¬µÃ|MN|=2$\sqrt{2}$•$\frac{1+{k}^{2}}{2+{k}^{2}}$£¬
ÔòËıßÐÎPQMNµÄÃæ»ýS=$\frac{1}{2}$|PQ|•|MN|=4•$\frac{1+2{k}^{2}+{k}^{4}}{2+5{k}^{2}+2{k}^{4}}$=4£¨$\frac{1}{2}$-$\frac{{k}^{2}}{4{k}^{4}+10{k}^{2}+4}$£©
=4£¨$\frac{1}{2}$-$\frac{1}{4{k}^{2}+\frac{4}{{k}^{2}}+10}$£©£¬ÓÉ4k2+$\frac{4}{{k}^{2}}$¡Ý2$\sqrt{4{k}^{2}•\frac{4}{{k}^{2}}}$=8£¬µ±ÇÒ½öµ±k2=1ʱµÈºÅ³ÉÁ¢£¬
¼´ÓÐ$\frac{1}{4{k}^{2}+\frac{4}{{k}^{2}}+10}$¡Ê£¨0£¬$\frac{1}{16}$]£¬Ôò 4£¨$\frac{1}{2}$-$\frac{1}{4{k}^{2}+\frac{4}{{k}^{2}}+10}$£©¡Ê[$\frac{16}{9}$£¬2£©£¬
×ÛÉÏËùÊö£¬ËıßÐÎPQMNµÄÃæ»ýS¡Ê[$\frac{16}{9}$£¬2]£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²éËıßÐÎÃæ»ýµÄ·¶Î§µÄÇ󷨣¬×¢ÒâÔËÓûù±¾²»µÈʽ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮