题目内容
(2013•上海)若cosxcosy+sinxsiny=
,sin2x+sin2y=
,则sin(x+y)=
.
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
分析:利用两角差的余弦公式及cosxcosy+sinxsiny=
,可得cos(x-y)=
,再利用和差化积公式sin2x+sin2y=
,得到2sin(x+y)cos(x-y)=
,即可得出sin(x+y).
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
解答:解:∵cosxcosy+sinxsiny=
,∴cos(x-y)=
.
∵sin2x+sin2y=
,∴2sin(x+y)cos(x-y)=
,
∴2sin(x+y)×
=
,
∴sin(x+y)=
.
故答案为
.
| 1 |
| 2 |
| 1 |
| 2 |
∵sin2x+sin2y=
| 2 |
| 3 |
| 2 |
| 3 |
∴2sin(x+y)×
| 1 |
| 2 |
| 2 |
| 3 |
∴sin(x+y)=
| 2 |
| 3 |
故答案为
| 2 |
| 3 |
点评:熟练掌握两角和差的正弦余弦公式及和差化积公式是解题的关键.
练习册系列答案
相关题目