题目内容
已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时( )
分析:通过函数的奇偶性与函数的导数的符号,判断x为负时,函数的导数的符号即可.
解答:解:因为任意数x满足f(x)为奇函数,对称区间上函数的单调性相同,
当x>0时,f′(x)>0,则x<0时,f′(x)>0,
任意数x满足g(x)为偶函数,对称区间上函数的单调性相反,
当x>0时,g′(x)>0,则x<0时g′(x)<0,
故选B.
当x>0时,f′(x)>0,则x<0时,f′(x)>0,
任意数x满足g(x)为偶函数,对称区间上函数的单调性相反,
当x>0时,g′(x)>0,则x<0时g′(x)<0,
故选B.
点评:本题考查函数的单调性与函数的奇偶性的关系,单调性与函数的导数的符号的关系,考查基本知识的应用.
练习册系列答案
相关题目