题目内容
(2011•南通三模)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
| 组号 | 分组 | 频数 | 频率 |
| 第一组 | [230,235) | 8 | 0.16 |
| 第二组 | [235,240) | ① | 0.24 |
| 第三组 | [240,245) | 15 | ② |
| 第四组 | [245,250) | 10 | 0.20 |
| 第五组 | [250,255] | 5 | 0.10 |
| 合 计 | 50 | 1.00 | |
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
分析:(1)由频率分布表,可得①位置的数据为50-8-15-10-5=12,②位置的数据为1-0.16-0.24-0.20-0.1=0.3,即可得答案;
(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,要求从中用分层抽样法抽取6名学生,抽取比例为
,由第三、四、五组的人数,计算可得答案;
(3)设(2)中选取的6人为abcdef(其中第四组的两人分别为d,e),记“2人中至少有一名是第四组”为事件A,用列举法列举从6人中任取2人的所有情形,进而可得事件A所含的基本事件的种数,由等可能事件的概率,计算可得答案.
(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,要求从中用分层抽样法抽取6名学生,抽取比例为
| 6 |
| 30 |
(3)设(2)中选取的6人为abcdef(其中第四组的两人分别为d,e),记“2人中至少有一名是第四组”为事件A,用列举法列举从6人中任取2人的所有情形,进而可得事件A所含的基本事件的种数,由等可能事件的概率,计算可得答案.
解答:解:(1)由频率分布表,可得①位置的数据为50-8-15-10-5=12,
②位置的数据为1-0.16-0.24-0.20-0.1=0.3,
故①②位置的数据分别为12、0.3;
(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,
要求从中用分层抽样法抽取6名学生,
则第三组参加考核人数为15×
=3,
第四组参加考核人数为10×
=2,
第五组参加考核人数为5×
=1,
故第三、四、五组参加考核人数分别为3、2、1;
(3)设(2)中选取的6人为a、b、c、d、e、f(其中第四组的两人分别为d,e),
则从6人中任取2人的所有情形为:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共有15种;
记“2人中至少有一名是第四组”为事件A,则事件A所含的基本事件的种数有9种.
所以P(A)=
=
,
故2人中至少有一名是第四组的概率为
.
②位置的数据为1-0.16-0.24-0.20-0.1=0.3,
故①②位置的数据分别为12、0.3;
(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,
要求从中用分层抽样法抽取6名学生,
则第三组参加考核人数为15×
| 6 |
| 30 |
第四组参加考核人数为10×
| 6 |
| 30 |
第五组参加考核人数为5×
| 6 |
| 30 |
故第三、四、五组参加考核人数分别为3、2、1;
(3)设(2)中选取的6人为a、b、c、d、e、f(其中第四组的两人分别为d,e),
则从6人中任取2人的所有情形为:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共有15种;
记“2人中至少有一名是第四组”为事件A,则事件A所含的基本事件的种数有9种.
所以P(A)=
| 9 |
| 15 |
| 3 |
| 5 |
故2人中至少有一名是第四组的概率为
| 3 |
| 5 |
点评:本题考查等可能事件的概率计算与频率分布表的运用,是常见的题型,注意加强训练.
练习册系列答案
相关题目