题目内容
(1)求证:A1B⊥平面CDE;
(2)求二面角D-CE-A1的大小.
分析:(1)要证A1B⊥平面CDE,只需证明A1B⊥平面CDE中的两条相交直线,易证A1B⊥AB1,A1B⊥DE,从而问题得证;
(2)先确定二面角D-CE-A1的平面角.根据A1B⊥平面CDE,设A1B与DE交于点M,过M作MN⊥CE,垂足为N,连接A1N,则A1N⊥CE,则可知∠A1NM即为二面角D-CE-A1的平面角.从而可求
(2)先确定二面角D-CE-A1的平面角.根据A1B⊥平面CDE,设A1B与DE交于点M,过M作MN⊥CE,垂足为N,连接A1N,则A1N⊥CE,则可知∠A1NM即为二面角D-CE-A1的平面角.从而可求
解答:解:(1)证明:在直三棱柱ABC-A1B1C1中,
面A1B⊥面ABC,又D为AB中点,∴CD⊥面A1B,
∴CD⊥A1B,∵AB=AA1,∴A1B⊥AB1,
又DE∥AB1∴A1B⊥DE,又DE∩CD=D
∴A1B⊥平面CDE
(2)由(Ⅰ)知A1B⊥平面CDE,设A1B与DE交于点M,过M作MN⊥CE,垂足为N,连接A1N,则A1N⊥CE,
故∠A1NM即为二面角D-CE-A1的平面角.
∵CE=
=
,EM=
AB1=1,
又由△ENM△EDC得MN=
=
.
又∵A1M=
A1B=3,∴BN=
=
,BM=
A1B=
=
=1,
在Rt△A1MN中,tan∠A1NM=
=3
,
故二面角D-CE-A1的大小为arctan3
.
面A1B⊥面ABC,又D为AB中点,∴CD⊥面A1B,
∴CD⊥A1B,∵AB=AA1,∴A1B⊥AB1,
又DE∥AB1∴A1B⊥DE,又DE∩CD=D
∴A1B⊥平面CDE
(2)由(Ⅰ)知A1B⊥平面CDE,设A1B与DE交于点M,过M作MN⊥CE,垂足为N,连接A1N,则A1N⊥CE,
故∠A1NM即为二面角D-CE-A1的平面角.
∵CE=
| BC2+BE2 |
| 6 |
| 1 |
| 4 |
又由△ENM△EDC得MN=
| CD•ME |
| CE |
| ||
| 3 |
又∵A1M=
| 3 |
| 4 |
| BC•BE |
| CE |
2
| ||
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
A
|
| 1 |
| 4 |
(2
|
在Rt△A1MN中,tan∠A1NM=
| A1M |
| MN |
| 3 |
故二面角D-CE-A1的大小为arctan3
| 3 |
点评:本题以直三棱柱为载体,考查线面垂直,考查面面角,关键是正确利用线面垂直的判定定理.
练习册系列答案
相关题目