题目内容

若一个底面边长为,侧棱长为的正六棱柱的所有顶点都在一个球面上,则此球的体积为   
【答案】分析:作出六棱柱的最大对角面与外截球的截面,设正六棱柱的上下底面中心分别为O1,O2,球心为O,一个顶点为A,如右图.可根据题中数据结合勾股定理算出球的半径OA,再用球的体积公式即可得到外接球的体积.
解答:解:作出六棱柱的最大对角面与外截球的截面,如右图,则该截面矩形分别以底面外接圆直径和六棱柱高为两边
设球心为O,正六棱柱的上下底面中心分别为O1,O2,则球心O是O1,O2的中点.
∵正六棱柱底面边长为,侧棱长为
∴Rt△AO1O中,AO1=,O1O=,可得AO==
因此,该球的体积为V=π•(3=
故答案为:
点评:本题给出一个正六棱柱,求它的外接球的体积,着重考查了球的内接多面体和球体积公式等知识点,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网