题目内容
已知
,
(Ⅰ)若存在实数k和t,使
,
,且
⊥
,试求函数关系式k=f(t);
(Ⅱ)根据(Ⅰ)的结论,确定k=f(t)的单调区间;
(Ⅲ)设a>0,若过点(a,b)可作曲线k=f(t)的三条切线,求证:
.
解:(Ⅰ)∵知
,
,
∴
=0,|
|=
=2,|
|=
=1,
=(
)+(
,
)=(
,
),
=(-
)+(
)=(
,
),
∴
=-4k+t(t2-3)=0,
∴k=f(t)=
.
(Ⅱ)∵f(t)=
,
∴f′(x)=k′=
=
,
令k′>0,得t>1,或t<-1,
令k′<0,得-1<t<1,
∴k=f(t)的单调增区间为(1,+∞),(-∞,-1);单调减区间为(-1,1).
(Ⅲ)设切点为(t,
),
,
∴切线方程为:y-
,
∵切线方程过(a,b),
∴b-
=
,
4b-t3+3t=(3t2-3)(a-t),
4b-t3+3t=3at2-3t2-3a+3t,
∴3a+4b=-2t3+3at2有三个不同的根,
令g(t)=-2t3+3at2,
g′(t)=-6t2+6at=-6t(t-a),
令g′(t)=0,得t=0,或t=a.
令g′(t)>0,得0<t<a,
令g′(x)<0,得t>a,或t<0,
∴g(t)极小值=g(0)=0,
g(t)极大值=g(a)=a3,
∴要使3a+4b=-2t3+3at2有三个不同的根,
则0<3a+4b<a3,
∴
,
故
.
分析:(Ⅰ)由
,
,知
=0,|
|=2,|
|=1,由此能求出k=f(t).
(Ⅱ)由f(t)=
,知f′(x)=k′=
=
,由此能求出k=f(t)的单调区间.
(Ⅲ)设切点为(t,
),
,则切线方程为:y-
,由切线方程过(a,b),知b-
=
,由此能够证明
.
点评:本题考查数量积判断两个平面向量垂直的条件的应用,具体涉及到平面向量的性质、导数的应用、函数性质、切线方程等基本知识点,解题时要认真审题,仔细解答.
∴
∴
∴k=f(t)=
(Ⅱ)∵f(t)=
∴f′(x)=k′=
令k′>0,得t>1,或t<-1,
令k′<0,得-1<t<1,
∴k=f(t)的单调增区间为(1,+∞),(-∞,-1);单调减区间为(-1,1).
(Ⅲ)设切点为(t,
∴切线方程为:y-
∵切线方程过(a,b),
∴b-
4b-t3+3t=(3t2-3)(a-t),
4b-t3+3t=3at2-3t2-3a+3t,
∴3a+4b=-2t3+3at2有三个不同的根,
令g(t)=-2t3+3at2,
g′(t)=-6t2+6at=-6t(t-a),
令g′(t)=0,得t=0,或t=a.
令g′(t)>0,得0<t<a,
令g′(x)<0,得t>a,或t<0,
∴g(t)极小值=g(0)=0,
g(t)极大值=g(a)=a3,
∴要使3a+4b=-2t3+3at2有三个不同的根,
则0<3a+4b<a3,
∴
故
分析:(Ⅰ)由
(Ⅱ)由f(t)=
(Ⅲ)设切点为(t,
点评:本题考查数量积判断两个平面向量垂直的条件的应用,具体涉及到平面向量的性质、导数的应用、函数性质、切线方程等基本知识点,解题时要认真审题,仔细解答.
练习册系列答案
相关题目