题目内容
如图所示,在△ABC中,点M是BC的中点,点N在边AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM的值.
![]()
4
【解析】设
=e1,
=e2,
则
=
+
=-3e2-e1,
=2e1+e2.
∵A,P,M和B,P,N分别共线,∴存在λ,μ∈R,
使
=λ
=-λe1-3λe2,
=μ
=2μe1+μe2.
故
=
-
=(λ+2μ)e1+(3λ+μ)e2,
而
=
+
=2e1+3e2,
∴
∴![]()
∴
=
,∴
=
,即AP∶PM=4.
练习册系列答案
相关题目