题目内容
△ABC中,若(
+
)•
=
|
|2,则
的值为( )
| CA |
| CB |
| AB |
| 3 |
| 5 |
| AB |
| tanA |
| tanB |
| A.2 | B.4 | C.
| D.2
|
△ABC中,∵(
+
)•
=
|
|2,即
•
+
•
=
2,
∴bc•cos(π-A)+ac•cosB=
c2,
∴a•cosB-b•cosA=
c,
∴a•
-b•
=
c,即 a2-b2=
c2.
∴
=
=
=
=
=4,
故选B.
| CA |
| CB |
| AB |
| 3 |
| 5 |
| AB |
| CA |
| AB |
| CB |
| AB |
| 3 |
| 5 |
| AB |
∴bc•cos(π-A)+ac•cosB=
| 3 |
| 5 |
∴a•cosB-b•cosA=
| 3 |
| 5 |
∴a•
| a2+c 2-b2 |
| 2ac |
| b2+c 2-a2 |
| 2bc |
| 3 |
| 5 |
| 3 |
| 5 |
∴
| tanA |
| tanB |
| sinA•cosB |
| sinBcosA |
a•
| ||
b•
|
| a2-b2+c2 |
| b2-a2+c2 |
| ||
-
|
故选B.
练习册系列答案
相关题目