题目内容

设等差数列{an}的前n项和为Sn,a2=5,S5=35,设数列{bn}满足an=log2bn
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)设Gn=a1•b1+a2•b2+…+an•bn,求Gn
分析:(1)由题意知
a1+d=5
5a1+10d=35
,解这个方程求出a1,d,能够得到an
(2)由an=log2bn得到bn=2an=22n+1
bn+1
bn
=
22n+3
22n+1
=4
,所以Tn=23+25++22n+1=
8(1-4n)
1-4
=
8
3
(4n-1)

(3)Gn=3•23+5•25+…+(2n+1)•22n+1,4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3,两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3,由此能导出Gn
解答:解:(1)由题意得
a1+d=5
5a1+10d=35
,解得
a1=3
d=2

∴an=2n+1(5分)
(2)由an=log2bn得到bn=2an=22n+1
bn+1
bn
=
22n+3
22n+1
=4
,∴数列{bn}是等比数列,其中b1=8,q=4,
Tn=23+25++22n+1=
8(1-4n)
1-4
=
8
3
(4n-1)
.(10分)

(3)Gn=3•23+5•25+…+(2n+1)•22n+1
∴4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3
两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3
即:-3Gn=24+(26+28+22n+2)-(2n+1)•22n+3
=24+
16(1-4n-1)
1-4
-(2n+1)•22n+3

=
8-(48n+8)4n
3

Gn=
(48n+8)4n-8
9
.(15分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网