题目内容
设等差数列{an}的前n项和为Sn,a2=5,S5=35,设数列{bn}满足an=log2bn.(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn;
(3)设Gn=a1•b1+a2•b2+…+an•bn,求Gn.
分析:(1)由题意知
,解这个方程求出a1,d,能够得到an.
(2)由an=log2bn得到bn=2an=22n+1,
=
=4,所以Tn=23+25++22n+1=
=
(4n-1).
(3)Gn=3•23+5•25+…+(2n+1)•22n+1,4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3,两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3,由此能导出Gn.
|
(2)由an=log2bn得到bn=2an=22n+1,
| bn+1 |
| bn |
| 22n+3 |
| 22n+1 |
| 8(1-4n) |
| 1-4 |
| 8 |
| 3 |
(3)Gn=3•23+5•25+…+(2n+1)•22n+1,4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3,两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3,由此能导出Gn.
解答:解:(1)由题意得
,解得
∴an=2n+1(5分)
(2)由an=log2bn得到bn=2an=22n+1,
∴
=
=4,∴数列{bn}是等比数列,其中b1=8,q=4,
∴Tn=23+25++22n+1=
=
(4n-1).(10分)
(3)Gn=3•23+5•25+…+(2n+1)•22n+1
∴4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3
两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3
即:-3Gn=24+(26+28+22n+2)-(2n+1)•22n+3
=24+
-(2n+1)•22n+3
=
∴Gn=
.(15分)
|
|
∴an=2n+1(5分)
(2)由an=log2bn得到bn=2an=22n+1,
∴
| bn+1 |
| bn |
| 22n+3 |
| 22n+1 |
∴Tn=23+25++22n+1=
| 8(1-4n) |
| 1-4 |
| 8 |
| 3 |
(3)Gn=3•23+5•25+…+(2n+1)•22n+1
∴4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3
两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3
即:-3Gn=24+(26+28+22n+2)-(2n+1)•22n+3
=24+
| 16(1-4n-1) |
| 1-4 |
=
| 8-(48n+8)4n |
| 3 |
∴Gn=
| (48n+8)4n-8 |
| 9 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目