ÌâÄ¿ÄÚÈÝ
ÔÚÒ»´Î´úºÅΪ¡°¶«·½ÐÛʦ¡±µÄ¾üÊÂÑÝϰÖУ¬ºì¾üÅɳö¼×¡¢ÒÒÁ½¼ÜºäÕ¨»ú¶ÔÀ¶¾üµÄͬһµØÃæÄ¿±ê½øÐкäÕ¨£¬ÒÑÖª¼×ºäÕ¨»úͶµ¯1´ÎÃüÖÐÄ¿±êµÄ¸ÅÂÊΪ£¨1£©ÈôÖÁÉÙ2´ÎͶµ¯ÃüÖвÅÄÜ´Ý»ÙÕâ¸öµØÃæÄ¿±ê£¬ÇóÄ¿±ê±»´Ý»ÙµÄ¸ÅÂÊ£»
£¨2£©¼ÇÄ¿±ê±»ÃüÖеĴÎÊýÎªËæ»ú±äÁ¿¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÌâÒâÉèAk±íʾ¼×ºäÕ¨»úÃüÖÐÄ¿±êk´Î£¬k=0£¬1£¬2£¬Bl±íʾÒÒºäÕ¨»úÃüÖÐÄ¿±êl´Î£¬l=0£¬1£¬2£¬ÔòAk£¬BlÏ໥¶ÀÁ¢£®ÓɶÀÁ¢Öظ´ÊÔÑéÖÐʼþ·¢ÉúµÄ¸ÅÂʹ«Ê½¼´¿ÉÇóµÃ£»
£¨2£©ÓÉÓÚ¼ÇÄ¿±ê±»ÃüÖеĴÎÊýÎªËæ»ú±äÁ¿¦Î£¬ÀûÓÃÌâÒâ¿ÉÖª¦ÎµÄËùÓпÉÄÜֵΪ0£¬1£¬2£¬3£¬4£¬ÀûÓÃËæ»ú±äÁ¿µÄ¶¨Òå¼°Æä·Ö²¼Áе͍Òå¼´¿ÉÇó½âÆäÆÚÍû£®
½â´ð£º½â£ºÉèAk±íʾ¼×ºäÕ¨»úÃüÖÐÄ¿±êk´Î£¬k=0£¬1£¬2£¬Bl±íʾÒÒºäÕ¨»úÃüÖÐÄ¿±êl´Î£¬l=0£¬1£¬2£¬ÔòAk£¬BlÏ໥¶ÀÁ¢£®ÓɶÀÁ¢Öظ´ÊÔÑéÖÐʼþ·¢ÉúµÄ¸ÅÂʹ«Ê½ÓÐ
P£¨Ak£©=C2k£¨
£©k£¨
£©2-k£¬P£¨Bl£©=C2t£¨
£©l£¨
£©2-l£®
¾Ý´ËËãµÃP£¨A£©=
£¬P£¨A1£©=
£¬P£¨A2£©=
£®P£¨B£©=
£¬P£¨B1£©=
£¬P£¨B2£©=
£®
£¨1£©ËùÇó¸ÅÂÊΪ1-P£¨AB+AB1+A1B£©=1-£¨
×
+
×
+
×
£©=1-
=
£®
£¨2£©¦ÎµÄËùÓпÉÄÜֵΪ0£¬1£¬2£¬3£¬4£¬Ôò
P£¨¦Î=0£©=P£¨AB£©=
×
=
£¬
P£¨¦Î=1£©=P£¨AB1£©+P£¨A1B£©=
×
+
×
=
£¬
P£¨¦Î=2£©=P£¨AB2£©+P£¨A1B1£©+P£¨A2B£©=
×
+
×
+
×
=
£¬
P£¨¦Î=3£©=P£¨A1B2£©+P£¨A2B1£©=
×
+
×
=
£¬
P£¨¦Î=4£©=P£¨A2B2£©=
×
=
£®
×ÛÉÏÖª£¬¦ÎµÄ·Ö²¼ÁÐΪ
´Ó¶ø£¬¦ÎµÄÊýѧÆÚÍûE¦Î=0×
+1×
+2×
+3×
+4×
=
£®
µãÆÀ£º´ËÌ⿼²éÁËѧÉú¶ÔÓÚÌâÒâµÄÀí½âÄÜÁ¦£¬¶ÀÁ¢Ê¼þͬʱ·¢ÉúµÄ¸ÅÂʹ«Ê½£¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ¶¨Òå¼°ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆÚÍû£¬»¹¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£®
£¨2£©ÓÉÓÚ¼ÇÄ¿±ê±»ÃüÖеĴÎÊýÎªËæ»ú±äÁ¿¦Î£¬ÀûÓÃÌâÒâ¿ÉÖª¦ÎµÄËùÓпÉÄÜֵΪ0£¬1£¬2£¬3£¬4£¬ÀûÓÃËæ»ú±äÁ¿µÄ¶¨Òå¼°Æä·Ö²¼Áе͍Òå¼´¿ÉÇó½âÆäÆÚÍû£®
½â´ð£º½â£ºÉèAk±íʾ¼×ºäÕ¨»úÃüÖÐÄ¿±êk´Î£¬k=0£¬1£¬2£¬Bl±íʾÒÒºäÕ¨»úÃüÖÐÄ¿±êl´Î£¬l=0£¬1£¬2£¬ÔòAk£¬BlÏ໥¶ÀÁ¢£®ÓɶÀÁ¢Öظ´ÊÔÑéÖÐʼþ·¢ÉúµÄ¸ÅÂʹ«Ê½ÓÐ
P£¨Ak£©=C2k£¨
¾Ý´ËËãµÃP£¨A£©=
£¨1£©ËùÇó¸ÅÂÊΪ1-P£¨AB+AB1+A1B£©=1-£¨
£¨2£©¦ÎµÄËùÓпÉÄÜֵΪ0£¬1£¬2£¬3£¬4£¬Ôò
P£¨¦Î=0£©=P£¨AB£©=
P£¨¦Î=1£©=P£¨AB1£©+P£¨A1B£©=
P£¨¦Î=2£©=P£¨AB2£©+P£¨A1B1£©+P£¨A2B£©=
P£¨¦Î=3£©=P£¨A1B2£©+P£¨A2B1£©=
P£¨¦Î=4£©=P£¨A2B2£©=
×ÛÉÏÖª£¬¦ÎµÄ·Ö²¼ÁÐΪ
| ¦Î | 1 | 2 | 3 | 4 | |
| P |
µãÆÀ£º´ËÌ⿼²éÁËѧÉú¶ÔÓÚÌâÒâµÄÀí½âÄÜÁ¦£¬¶ÀÁ¢Ê¼þͬʱ·¢ÉúµÄ¸ÅÂʹ«Ê½£¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ¶¨Òå¼°ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆÚÍû£¬»¹¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿