题目内容

已知a,b,c均为正数,证明:a2+b2+c2+(
1
a
+
1
b
+
1
c
)2
≥6
3
,并确定a,b,c为何值时,等号成立.
分析:证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.
证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与
1
a2
+
1
b2
+
1
c2
1
ab
+
1
bc
+
1
ac
两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.
解答:证明:
(证法一)
因为a,b,c均为正数,由平均值不等式得
a2+b2+c2≥3(abc)
2
3
1
a
+
1
b
+
1
c
≥3(abc)-
1
3

所以(
1
a
+
1
b
+
1
c
)2≥9(abc)-
2
3
②(6分)
a2+b2+c2+(
1
a
+
1
b
+
1
c
)2≥3(abc)
2
3
+9(abc)-
2
3

3(abc)
2
3
+9(abc)-
2
3
≥2
27
=6
3

所以原不等式成立.(8分)
当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)
2
3
=9(abc)-
2
3
时,③式等号成立.
即当且仅当a=b=c=3
1
4
时,原式等号成立.(10分)
(证法二)
因为a,b,c均为正数,由基本不等式得
a2+b2≥2ab
b2+c2≥2bc
c2+a2≥2ac

所以a2+b2+c2≥ab+bc+ac①
同理
1
a2
+
1
b2
+
1
c2
1
ab
+
1
bc
+
1
ac
②(6分)
a2+b2+c2+(
1
a
+
1
b
+
1
c
)2

≥ab+bc+ac+3
1
ab
+3
1
bc
+3
1
ac

≥6
3
所以原不等式成立.(8分)
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c=3
1
4
时,原式等号成立.(10分)
点评:考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网