题目内容
已知函数
.
(Ⅰ)当
时,证明函数
只有一个零点;
(Ⅱ)若函数
在区间
上是减函数,求实数
的取值范围.
解:(Ⅰ)当
时,
,其定义域是
∴
…………2分
令
,即
,解得
或
.
,∴
舍去.
当
时,
;当
时,
.
∴ 函数
在区间
上单调递增,在区间
上单调递减
∴ 当x =1时,函数
取得最大值,其值为
.
当
时,
,即
.
∴ 函数
只有一个零点. ……………………6分
(Ⅱ)显然函数
的定义域为![]()
∴
………7分
① 当
时,
在区间
上为增函数,不合题意……8分
② 当
时,
等价于
,即![]()
此时
的单调递减区间为
.
依题意,得
解之得
. ………10分
③ 当
时,
等价于
,即![]()
此时
的单调递减区间为
,
∴
得![]()
综上,实数
的取值范围是
…………12分
练习册系列答案
相关题目