题目内容

(本题满分12分)

已知函数,且函数的图象关于直线对称,又.         

(1)求的值域;

(2)是否存在实数,使命题 满足复合命题为真命题? 若存在, 求出的范围; 若不存在, 说明理由.

 

【答案】

(1)的值域为

(2)存在实数使得命题:为真命题,且的取值范围为

【解析】(1)由,

于是------------------------------------3分

 由,此函数在是单调减函数,

从而的值域为。------------------------------6分

(2) 假定存在的实数m满足题设,即fm2mf(3m4)和都成立

   ∴,    ∴ ---------8分

的值域为,则的定义域为 

 已证上是减函数,则也是减函数,

由减函数的定义得

      -------------------------------------------------11分

解得,

因此存在实数使得命题:为真命题,且的取值范围为. ----12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网