题目内容

已知函数f(x)=x3+ax2+bx+c的一个零点为x=1,另外两个零点可分别作为一个椭圆、一双曲线的离心率,则a+b+c=______;
b
a
的取值范围是______.
依题意可知f(1)=1+a+b+c=0
∴a+b+c=1
1+a+b+c=0得c=-1-a-b代入
f(x)=x3+ax2+bx-1-a-b
=(x-1)(x2+x+1)+a(x+1)(x-1)+b(x-1)
设g(x)=x2+(a+1)x+1+a+b
g(x)=0的两根满足0<x1<1 x2>1
g(0)=1+a+b>0
g(1)=3+2a+b<0
用线性规划得-2<
b
a
<-
1
2

故答案为:-1,(-2,-
1
2
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网