题目内容

与椭圆
x2
4
+y2=1
共焦点且过点P(2,1)的双曲线方程是(  )
A、
x2
4
-y2=1
B、
x2
2
-y2=1
C、
x2
3
-
y2
3
=1
D、x2-
y2
2
=1
分析:先根据椭圆的标准方程,求得焦点坐标,进而求得双曲线离心率,根据点P在双曲线上,根据定义求出a,从而求出b,则双曲线方程可得.
解答:解:由题设知:焦点为
3
  , 0 ) , 2a=
(2+
3
)
2
+12
-
(2-
3
)
2
+12
=2
2

a=
2
,c=
3
,b=1
∴与椭圆
x2
4
+y2=1
共焦点且过点P(2,1)的双曲线方程是
x2
2
-y2=1

故选B.
点评:本题主要考查了双曲线的标准方程.考查了学生对双曲线和椭圆基本知识的掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网