题目内容

在(1-x3)(1+x)10展开式中,x5的系数是


  1. A.
    -297
  2. B.
    -252
  3. C.
    297
  4. D.
    207
D
分析:先将多项式展开,转化成两二项式系数的差,利用二项展开式的通项公式求出第r+1项,令x的指数为5,2求出二项展开式的系数.
解答:(1-x3)(1+x)10=(1+x)10-x3(1+x)10
∴(1-x3)(1+x)10展开式的x5的系数是(1+x)10的展开式的x5的系数减去(1+x)10的x2的系数
∵(1+x)10的展开式的通项为Tr+1=C10rxr
令r=5,2得(1+x)10展开式的含x5的系数为C105;展开式的含x2的系数为C102
C105-C102=252-45=207
故选项为D
点评:本题考查等价转化的能力及利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网