题目内容
已知:sin(α-
)=
,cos(
-β)=-
,且α-
与
-β分别为第二、三象限角,
求:tan
的值.
| β |
| 2 |
| 4 |
| 5 |
| α |
| 2 |
| 12 |
| 13 |
| β |
| 2 |
| α |
| 2 |
求:tan
| α+β |
| 2 |
由于α-
与
-β分别为第二、三象限角,sin(α-
)=
,cos(
-β)=-
,
∴cos(α-
)=-
,sin(
-β )=-
.
∴tan(α-
)=
=-
,tan(
-β )=
=
.
∴tan
=tan[(α-
) - (
-β)]=
=
=-
.
| β |
| 2 |
| α |
| 2 |
| β |
| 2 |
| 4 |
| 5 |
| α |
| 2 |
| 12 |
| 13 |
∴cos(α-
| β |
| 2 |
| 3 |
| 5 |
| α |
| 2 |
| 5 |
| 13 |
∴tan(α-
| β |
| 2 |
sin(α-
| ||
cos(α-
|
| 4 |
| 3 |
| α |
| 2 |
sin(
| ||
cos(
|
| 5 |
| 12 |
∴tan
| α+β |
| 2 |
| β |
| 2 |
| α |
| 2 |
tan(α-
| ||||
1+tan(α-
|
-
| ||||
1+(-
|
| 63 |
| 16 |
练习册系列答案
相关题目