题目内容
已知
=(sin(
-2x),-1),
=(3,-2),且函数f(x)=
•
,
(1)求f(x)的增区间;
(2)求f(x)在区间[-
,
]上的最大、最小值及相应的x值.
| a |
| π |
| 6 |
| b |
| a |
| b |
(1)求f(x)的增区间;
(2)求f(x)在区间[-
| π |
| 12 |
| π |
| 2 |
分析:(Ⅰ)由题意可求得f(x)=
•
=-3sin(2x-
)+2,从而可求得f(x)的增区间;
(Ⅱ)由-
≤x≤
可求得-
≤2x-
≤0,利用正弦函数的性质可求得f(x)在区间[-
,
]上的最大、最小值及相应的x值.
| a |
| b |
| π |
| 6 |
(Ⅱ)由-
| π |
| 12 |
| π |
| 12 |
| π |
| 3 |
| π |
| 6 |
| π |
| 12 |
| π |
| 2 |
解答:解:(1)∵f(x)=
•
=3sin(
-2x)+2
=-3sin(2x-
)+2,
∴由2kπ+
≤2x-
≤2kπ+
(k∈Z)可求其递增区间为:[kπ+
,kπ+
](k∈Z).
(2)∵-
≤x≤
,
∴-
≤2x-
≤
,
∵g(x)=-sinx在[-
,
]上单调递减,[
,
]上单调递增;
∴g(x)max=g(-
)=
,由2x-
=-
得,x=-
;
g(x)min=g(
)=-1,由2x-
=
得,x=
.
∴当x=-
,f(x)max=3×
+2=
+2;
当x=
时,f(x)min=3×(-1)+2=-1.
| a |
| b |
=3sin(
| π |
| 6 |
=-3sin(2x-
| π |
| 6 |
∴由2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
(2)∵-
| π |
| 12 |
| π |
| 2 |
∴-
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
∵g(x)=-sinx在[-
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
| 5π |
| 6 |
∴g(x)max=g(-
| π |
| 3 |
| ||
| 2 |
| π |
| 6 |
| π |
| 3 |
| π |
| 12 |
g(x)min=g(
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∴当x=-
| π |
| 12 |
| ||
| 2 |
3
| ||
| 2 |
当x=
| π |
| 3 |
点评:本题考查正弦函数的单调性,以向量的数量积为载体考查正弦函数的定义域和值域,求得f(x)=-3sin(2x-
)+2是解决问题的关键,属于中档题.
| π |
| 6 |
练习册系列答案
相关题目