搜索
题目内容
设f(x)=(x+1)(x-1)(x-2)(x-3),在数轴上f(x)=0的点分成的区间中, f(x)为正值的区间是
A.
(-∞,-1)∪(2,3)
B.
(-1,1)∪(2,3)
C.
(-∞,-1)∪(1,2)∪(3,+ ∞)
D.
(-∞,-0]∪(1,2]∪[3,+ ∞)
试题答案
相关练习册答案
C
练习册系列答案
必胜课口算题卡系列答案
金博士一点全通丛书导与学系列答案
乐学阅读系列答案
全优训练计划系列答案
中考热点作家作品阅读系列答案
Short Stories for Comprehension妙语短篇系列答案
小夫子卡卡漫游系列答案
深圳市初中学业水平考试系列答案
小升初集结号系列答案
名著导读全析精练系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
设
h(x)=x+
m
x
,
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f
1
(x)=minf(t)|a≤t≤x(x∈[a,b]),f
2
(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f
1
(x)=cosx,x∈[0,π],f
2
(x)=1,x∈[0,π].
(理)当m=1时,设
M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M
1
(x)-M
2
(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h
1
(x)-h
2
(x)|≤n恒成立,求n的取值范围.
设
f(x)=
x+1(x≥1)
3-x(x<1)
,则f(f(-1))的值为( )
A.5
B.4
C.
5
2
D.-1
设
f(x)=
x+1(x≥1)
3-x(x<1)
,则f(f(-1))的值为( )
A.5
B.4
C.
5
2
D.-1
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案