题目内容
已知数列{an}对于任意的p、q∈N*,满足ap+q=ap+aq且a2=2,则
+
+…+
=
.
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a2008a2009 |
| 2008 |
| 2009 |
| 2008 |
| 2009 |
分析:由题意ap+q=ap+aq且a2=2,求出a1=1,推出数列是等差数列,然后可以裂项法化简所求表达式,得到结果.
解答:解:数列{an}对于任意的p、q∈N*,满足ap+q=ap+aq且a2=2,所以a2=a1+a1且a1=1,
所以an+1=an+1,数列是等差数列,an=n,所以
+
+…+
=-(
-
+
-
+…+
-
)=1-
=
.
故答案为:
.
所以an+1=an+1,数列是等差数列,an=n,所以
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a2008a2009 |
=-(
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| a2009 |
| 1 |
| a2008 |
| 1 |
| 2009 |
| 2008 |
| 2009 |
故答案为:
| 2008 |
| 2009 |
点评:本题是中档题,考查数列的递推关系式,通项公式与前n项和的求法,考查计算能力.
练习册系列答案
相关题目