题目内容

有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为0.6,0.8,0.9.

(1)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;

(2)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率;

解:(1)甲和乙之间进行三场比赛,甲恰好胜两场的概率为P=×0.62×0.4=0.432.

(2)记“甲胜乙”,“甲胜丙”,“甲胜丁”三个事件分别为A,B,C,则P(A)=0.6,P(B)=0.8,P(C)= 0.9.

则四名运动员每两人之间进行一场比赛,甲恰好胜两场的概率为

P(A·B·+A··C+·B·C)

=P(A)·P(B)·[1-P(C)]+P(A)·[1-P(B)]·P(C)+[1-P(A)]·P(B)·P(C)

=0.6×0.8×0.1+0.6×0.2×0.9+0.4×0.8×0.9

=0.444.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网