题目内容
函数的导函数在区间内的图象如图所示, 则在内的极大值点有( )
A. 1个 B. 2个 C. 3个 D. 4个
已知函数,则( )
A. B. C. D.4
某电视台连续播放6个广告,其中有4个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方式有( )种.
A.192 B.152 C.72 D.36
已知函数在(0, 1)内有最小值, 则的取值范围是 .
已知命题,命题, 若命题“且”是真命题, 则实数的取值范围是( )
A. B.
C. D.
某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:).跳高成绩在175以上(包括175 )定义为“合格”,成绩在175以下定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队员,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.
(1)求甲队队员跳高成绩的中位数;
(2)如果将所有的运动员按“合格”与“不合格”分成两个层次,用分层抽样抽取“合格”与“不合格”的人数共5人,则各层应抽取多少人?
(3)若从所有“合格”运动员中选取2名,用表示所选运动员中能参加市运动会开幕式旗林队的人数,试写出的分布列,并求的数学期望.
执行如图所示的程序框图,输出的结果为________________.
若关于x的不等式ax2+3x﹣1>0的解集是{x|<x<1},
(1)求a的值;
(2)求不等式ax2﹣3x+a2+1>0的解集.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.