题目内容
【题目】如图,已知长方形ABCD中,
,
,M为DC的中点,将
沿AM折起,使得平面
平面ABCM.
![]()
![]()
(1)求证:平面
平面BMD;
(2)若点E是线段DB上的一动点,问
为何值时,二面角
的余弦值为
.
【答案】(1)证明见解析;(2)
的值为
.
【解析】
(1)首先证明线面垂直,利用线面垂直证明面面垂直;
(2)建立空间直角坐标系,列出各点坐标,求出平面法向量,根据面面角的公式以及二面角的余弦值可求出
.
(1)
长方形ABCD中,
,
,M为DC的中点,
,
故
,所以
,
平面
平面ABCM,平面
平面
,
平面ABCM,
平面ADM,
平面BDM,
平面
平面BMD;
(2)建立如图所示的直角坐标系,则平面ADM的一个法向量
,
![]()
设
,则
,
又
,
,
,
,
故
,
,
,
,
设平面AME的一个法向量为
,
则
,即
,取
,
由题意知
,
故
,
即
,解得
,
故当
的值为
时,二面角
的余弦值为
.
练习册系列答案
相关题目
【题目】某工厂的
,
,
三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 |
|
|
|
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自
,
,
各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.