题目内容

求经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点,且圆心在直线x-y-4=0上的圆的方程.
【答案】分析:根据已知,可通过解方程组:得圆上两点,由圆心在直线x-y-4=0上,三个独立条件,用待定系数法求出圆的方程;也可根据已知,设所求圆的方程为(x+3)2+y2-13+λ[x2+(y+3)2-37]=0,再由圆心在直线x-y-4=0上,定出参数λ,得圆方程.
解答:解:因为所求的圆经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点,
所以设所求圆的方程为(x+3)2+y2-13+λ[x2+(y+3)2-37]=0.
整理,得(x+2+(y+2=+
圆心为(-,-),代入方程x-y-4=0,得λ=-7.
故所求圆的方程为(x-2+(y+2=
点评:本题考查用待定系数法求圆的方程,一般可通过已知条件,设出所求方程,再寻求方程组进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网