题目内容

求经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点,且圆心在直线x-y-4=0上的圆的方程.
分析:根据已知,可通过解方程组:
(x+3)2+y2=13
x2+(y+3)2=37
得圆上两点,由圆心在直线x-y-4=0上,三个独立条件,用待定系数法求出圆的方程;也可根据已知,设所求圆的方程为(x+3)2+y2-13+λ[x2+(y+3)2-37]=0,再由圆心在直线x-y-4=0上,定出参数λ,得圆方程.
解答:解:因为所求的圆经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点,
所以设所求圆的方程为(x+3)2+y2-13+λ[x2+(y+3)2-37]=0.
整理,得(x+
3
1+λ
2+(y+
1+λ
2=
4+28λ
1+λ
+
9(1+λ2)
(1+λ)2

圆心为(-
3
1+λ
,-
1+λ
),代入方程x-y-4=0,得λ=-7.
故所求圆的方程为(x-
1
2
2+(y+
7
2
2=
89
2
点评:本题考查用待定系数法求圆的方程,一般可通过已知条件,设出所求方程,再寻求方程组进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网