题目内容
已知椭圆
的离心率为
,其左,右焦点分别为
,
,点
是坐标平面内一点,且
,
,其中
为坐标原点.
(1)求椭圆
的方程;
(2)过点
,且斜率为
的动直线
交椭圆于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个定点?若存在,求出点
的坐标;若不存在,请说明理由.
练习册系列答案
相关题目
某校高三年级文科学生600名,从参加期末考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
分组 | 频数 | 频率 |
[45,60) | 2 | 0.04 |
[60,75) | 4 | 0.08 |
[75,90) | 8 | 0.16 |
[90,105) | 11 | 0.22 |
[105,120) | 15 | 0.30 |
[120,135) | a | b |
[135,150] | 4 | 0.08 |
合计 | 50 | 1 |
(1)写出
的值;
(2)估计该校文科生数学成绩在120分以上学生人数;
(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.