题目内容

如图,在正方体ABCDA1B1C1D1中,点E在棱CC1上.

(1)求证:A1EBD

(2)若E为棱CC1的中点,求证:AC1∥平面BED

(3)当的值为多少时,二面角A1-BD-E为直二面角?请给出证明.

解法一:(1)证明:连结ACBDO,                                                        ?

∵点E 在棱CC1上,?

ACA1E在底面ABCD内的射影.?

在正方形ABCD中,ACBD,?

由三垂线定理得A1EBD.                                                                                      ?

(2)方法一:证明:连结OE,                                                                                 ?

E为棱CC1的中点,?

又∵在正方形ABCD中,OAC中点,?

OEAC1.                                                                                                            ?

又∵OE平面BEDAC1 平面BED,?

AC1∥平面BED.                                                                                                         ?

方法二:证明:∵=++??

=++2??

=(+)+(+)?

=+,                                                                                                                ?

不共线,∴共面.?

又∵AC1平面BED,∴AC1∥平面BED.                                                                      ?

(3)当=时,二面角A1-BD-E为直二面角.                                                        ?

证明:∵在正方形ABCD中,OBD的中点,?

∴在等边△A1BD中,A1OBD.又∵△BCE≌△DCE,∴BE=DE.?

OEBD.?

∴∠A1OE为二面角A1-BD-E的平面角.                                                                   ?

在正方体ABCDA1B1C1D1中,设棱长为2a,?

=,?

E为棱CC1的中点,由平面几何知识得?

EO=a,A1O=a,A1E=3a.?

方法一:∴cos∠A1OE=

?

==0.?

∴∠A1OE=90°.?

故二面角A1-BD-E为直二面角.                                                                               ?

方法二:∵AE2=A1O2+EO2,∴∠A1OE=90°.?

故二面角A1-BD-E为直二面角.                                                                              

方法三:当=时,二面角A1-BD-E为直二面角.                                            ?

证明:∵=,∴ECC1的中点.?

∴由(2)得OEAC1.?

C1C⊥底面ABCD,则ACA1C在底面ABCD内的射影,?

ACBD,∴AC1BD.?

同理可证AC1A1B,又BDA1B=B,?

AC1⊥平面A1BD.                                                                                                       ?

OE⊥平面A1BD.?

又∵OE平面BED,?

∴平面A1BD⊥平面BED,故二面角A1-BD-E为直二面角.                                               ?

解法二:如图所示建立空间直角坐标系Axyz,设AD=2a,?

(1) B(2a,0,0),D(0,2a,0),A1(0,0,2a),?

E2a,2a,λ)(λ∈R).?

=(2a,2a,λ-2a),=(-2a,2a,0),

·?=2 a·(-2a)+2a·2a+(λ-2a)·0=0.?

, 故A1EBD.                                                                                  

?

(2)方法一:连结ACBDO.?

OAC中点,∴Oa,a,0).?

 又ECC1中点,∴E2a,2a,a).?

=(2a,2a,2a), =(a,a,a).?

=2.∴.                                                                                 ?

又∵AC1OE不共线,?

AC1OE.?

又∵OE平面BEDAC1平面BED,?

AC1∥平面BED.                                                                                                         ?

方法二:=(0,2a,a),=(2a,0,a),?

=(2a,2a,2a).                                                                                             ?

假设存在实数xy,使=x+y,?

解得=+.?

又∵不共线,

共面.                                                                                       ?

又∵AC1平面BED

AC1∥平面BED.                                                                                                         ?

(3)方法一:连结ACBDO,连结OA1,OE,?

在等边 △A1BD中,A1OBD,?

又∵△BCE≌△DCE,∴BE=DE.?

OEBD.?

∴∠A1OE为二面角A1-BD-E的平面角.                                                                   ?

欲使二面角A1BDE为直二面角,只要,?

·=0.?

依题意可设E2a,2aλ)(λ∈R),则?

=(a,a,λ),而=(-a,-a,2a),?

a·(-a)+a·(-a)+2aλ=0,解得λ=a.∴CE=a.?

故当=时,二面角A1-BD-E为直二面角.                                                      ?

方法二:=(-2a2a,0),=(0,2aa),=(-2a,0,2a),?

设平面A1BD的法向量为n=(x,y,z),?

n·=0及n·=0,得x=1,y=z=1,则n=(1,1,1).                   ?

依题意可设E=(2a,2a,λ)(λ∈R),?

=(0,2a,λ),而=(-2a,2a,0),?

设平面BED的法向量为M=(xyz),

M·=0及M·=0,得?取y=1,则x=1,z=-,?

M=(1,1,-).                                                                                                     ?

欲使二面角A1-BD-E为直二面角,只要Mn,?

M·n=0.∴(1,1,-)·(1,1,0)=0.?

∴1+1-=0,解得λa.故当=时,二面角A1-BD-E为直二面角.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网