ÌâÄ¿ÄÚÈÝ
£¨2008•ºÍÆ½ÇøÈýÄ££©¶¨ÒåÒ»ÖÖÔËËã*£¬Âú×ãn*k=n¦Ëk-1£¨n£¬k¡ÊN*£¬¦ËΪ·ÇÁãʵ³£Êý£©
£¨1£©¶ÔÈÎÒâ¸ø¶¨µÄk£¬Éèan=n*k£¨n=1£¬2¡£©£¬ÇóÖ¤ÊýÁÐ{an}ÊǵȲîÊýÁУ¬²¢Çók=2ʱ£¬¸ÃÊýÁеÄǰ10ÏîºÍ£»
£¨2£©¶ÔÈÎÒâ¸ø¶¨µÄn£¬Éèbk=n*k£¨k=1£¬2¡£©£¬ÇóÖ¤ÊýÁÐ{bk}ÊǵȱÈÊýÁУ¬²¢Çó³ö´Ëʱ¸ÃÊýÁÐǰ10ÏîµÄºÍ£»
£¨3£©ÉèCn=n*n£¬ÊÔÇóÊýÁÐ{Cn}µÄǰnÏîºÍSn£¬²¢Ç󵱦ˡʣ¨0£¬1£©Ê±£¬
Sn£®
£¨1£©¶ÔÈÎÒâ¸ø¶¨µÄk£¬Éèan=n*k£¨n=1£¬2¡£©£¬ÇóÖ¤ÊýÁÐ{an}ÊǵȲîÊýÁУ¬²¢Çók=2ʱ£¬¸ÃÊýÁеÄǰ10ÏîºÍ£»
£¨2£©¶ÔÈÎÒâ¸ø¶¨µÄn£¬Éèbk=n*k£¨k=1£¬2¡£©£¬ÇóÖ¤ÊýÁÐ{bk}ÊǵȱÈÊýÁУ¬²¢Çó³ö´Ëʱ¸ÃÊýÁÐǰ10ÏîµÄºÍ£»
£¨3£©ÉèCn=n*n£¬ÊÔÇóÊýÁÐ{Cn}µÄǰnÏîºÍSn£¬²¢Ç󵱦ˡʣ¨0£¬1£©Ê±£¬
| lim | n¡ú¡Þ |
·ÖÎö£º£¨1£©ÒÀÌâÒ⣬¿ÉÇóµÃan=n¦Ëk-1£¬ÀûÓõȲîÊýÁе͍Òå¼´¿ÉÅж¨ÊýÁÐ{an}Êǹ«²îΪ¦Ëk-1µÄµÈ²îÊýÁУ¬µ±k=2ʱ£¬an=n¦Ë£¬´Ó¶ø¿ÉÇó¸ÃÊýÁеÄǰ10ÏîºÍ£»
£¨2£©bk=n*k=n¦Ëk-1⇒
=¦Ë£¬¿ÉÖªÊýÁÐ{bk}Êǹ«±ÈΪ¦ËµÄµÈ±ÈÊýÁУ¬·Ö¦Ë=1Óë¦Ë¡Ù1£¬ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉÇóµÃ¸ÃÊýÁÐǰ10ÏîµÄºÍ£»
£¨3£©ÒÀÌâÒ⣬¿ÉÇóµÃ¡àCn=n¦Ën-1£¬Sn=1+2¦Ë+3¦Ë2+¡+n¦Ën-1£¬ÀûÓôíλÏà¼õ·¨¼´¿ÉÇóµÃSn£®
£¨2£©bk=n*k=n¦Ëk-1⇒
| bk+1 |
| bk |
£¨3£©ÒÀÌâÒ⣬¿ÉÇóµÃ¡àCn=n¦Ën-1£¬Sn=1+2¦Ë+3¦Ë2+¡+n¦Ën-1£¬ÀûÓôíλÏà¼õ·¨¼´¿ÉÇóµÃSn£®
½â´ð£º½â£º£¨1£©¡ßan=n*k£¬ÓÖn*k=n¦Ëk-1£¬
¡àan=n¦Ëk-1£¬
¡àan+1=£¨n+1£©¦Ëk-1£¬
¡àan+1-an=¦Ëk-1£¨2·Ö£©
¡àÊýÁÐ{an}Êǹ«²îΪ¦Ëk-1µÄµÈ²îÊýÁУ¨3·Ö£©
µ±k=2ʱ£¬an=n¦Ë£¬
¡àa1+a2+¡+a10=
=55¦Ë£¨4·Ö£©
£¨2£©¡ßbk=n*k=n¦Ëk-1£¬
Ó֦ˡÙ0£¬
¡à
=¦Ë£¬
¹ÊÊýÁÐ{bk}Êǹ«±ÈΪ¦ËµÄµÈ±ÈÊýÁУ¨6·Ö£©
µ±¦Ë=1ʱ£¬b1+b2+¡+b10=10n£¬
µ±¦Ë¡Ù1ʱ£¬b1+b2+¡+b10=
£¨8·Ö£©
£¨3£©¡ßn*k=n¦Ëk-1£¬
¡àn*n=n¦Ën-1£¬
¶øCn=n*n
¡àCn=n¦Ën-1£¬
ËùÒÔSn=1+2¦Ë+3¦Ë2+¡+n¦Ën-1¢Ù£¨9·Ö£©
µ±¦Ë=1ʱ£¬Sn=1+2+3+¡+n=
£¨10·Ö£©
µ±¦Ë¡Ù1ʱ£¬¦ËSn=¦Ë+2¦Ë2+3¦Ë3+¡+n¦Ën¢Ú£¨11·Ö£©
¢Ù-¢ÚµÃ£¨1-¦Ë£©Sn=1+¦Ë+¦Ë2+¦Ë3+¡+¦Ën-1-n¦Ën
=
-n¦Ën=
ËùÒÔSn=
£¨13·Ö£©
Ôòµ±¦Ë¡Ê£¨0£¬1£©Ê±£¬
Sn=
£¨14·Ö£©
¡àan=n¦Ëk-1£¬
¡àan+1=£¨n+1£©¦Ëk-1£¬
¡àan+1-an=¦Ëk-1£¨2·Ö£©
¡àÊýÁÐ{an}Êǹ«²îΪ¦Ëk-1µÄµÈ²îÊýÁУ¨3·Ö£©
µ±k=2ʱ£¬an=n¦Ë£¬
¡àa1+a2+¡+a10=
| 10(¦Ë+10¦Ë) |
| 2 |
£¨2£©¡ßbk=n*k=n¦Ëk-1£¬
Ó֦ˡÙ0£¬
¡à
| bk+1 |
| bk |
¹ÊÊýÁÐ{bk}Êǹ«±ÈΪ¦ËµÄµÈ±ÈÊýÁУ¨6·Ö£©
µ±¦Ë=1ʱ£¬b1+b2+¡+b10=10n£¬
µ±¦Ë¡Ù1ʱ£¬b1+b2+¡+b10=
| n(1-¦Ë10) |
| 1-¦Ë |
£¨3£©¡ßn*k=n¦Ëk-1£¬
¡àn*n=n¦Ën-1£¬
¶øCn=n*n
¡àCn=n¦Ën-1£¬
ËùÒÔSn=1+2¦Ë+3¦Ë2+¡+n¦Ën-1¢Ù£¨9·Ö£©
µ±¦Ë=1ʱ£¬Sn=1+2+3+¡+n=
| n(n+1) |
| 2 |
µ±¦Ë¡Ù1ʱ£¬¦ËSn=¦Ë+2¦Ë2+3¦Ë3+¡+n¦Ën¢Ú£¨11·Ö£©
¢Ù-¢ÚµÃ£¨1-¦Ë£©Sn=1+¦Ë+¦Ë2+¦Ë3+¡+¦Ën-1-n¦Ën
=
| 1-¦Ën |
| 1-¦Ë |
| 1-(n+1)¦Ën+n¦Ën+1 |
| 1-¦Ë |
ËùÒÔSn=
| 1-(n+1)¦Ën+n¦Ën+1 |
| (1-¦Ë)2 |
Ôòµ±¦Ë¡Ê£¨0£¬1£©Ê±£¬
| lim |
| n¡ú¡Þ |
| 1 |
| (1-¦Ë)2 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÇóºÍ£¬×ÅÖØ¿¼²é´íλÏà¼õ·¨ÇóºÍ£¬¿¼²é¼«ÏÞµÄÔËË㣬ͻ³öת»¯Ë¼ÏëÓë·ÖÀàÌÖÂÛ˼ÏëµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿