题目内容
已知平面上两个点集,,则使T包含于S中的正数r的最大值为
下图展示了一个由区间(其中为一正实数)到实数集R上的映射过程:区间中的实数对应线段上的点,如图1;将线段围成一个离心率为的椭圆,使两端点、恰好重合于椭圆的一个短轴端点,如图2 ;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在轴上,已知此时点的坐标为,如图3,在图形变化过程中,图1中线段的长度对应于图3中的椭圆弧ADM的长度.图3中直线与直线交于点,则与实数对应的实数就是,记作,
现给出下列5个命题
①; ②函数是奇函数;③函数在上单调递增; ④.函数的图象关于点对称;⑤函数时AM过椭圆的右焦点.其中所有的真命题是: ( )
A.①③⑤ B.②③④ C.②③⑤ D.③④⑤
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换.
(Ⅰ)求复合变换的坐标变换公式;
(Ⅱ)求圆在复合变换的作用下所得曲线的方程.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),、分别为直线与轴、轴的交点,线段的中点为.
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.
(3)(本小题满分7分)选修4—5:不等式选讲
已知不等式的解集与关于的不等式的解集相等.
(Ⅰ)求实数,的值;
(Ⅱ)求函数的最大值,以及取得最大值时的值.
已知平面上两个点集 R}, R}. 若 , 则 的取值范围是____