题目内容
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
,数列{bn}的前n项和为Tn,求证:Tn>
.
(1)求数列{an}的通项公式;
(2)设bn=
| 1 | ||
|
| n |
| n+1 |
(1)由已知:对于n∈N*,总有2Sn=an+an2①成立
∴2Sn-1=an-1+an-1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12,∴an+an-1=(an+an-1)(an-an-1)
∵an,an-1均为正数,∴an-an-1=1(n≥2)∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1,∴an=n.(n∈N*)
(2)由(1)可知bn=
∵
>
=
-
∴Tn>(1-
)+(
-
)++(
-
)=
∴2Sn-1=an-1+an-1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12,∴an+an-1=(an+an-1)(an-an-1)
∵an,an-1均为正数,∴an-an-1=1(n≥2)∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1,∴an=n.(n∈N*)
(2)由(1)可知bn=
| 1 |
| n2 |
| 1 |
| n2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn>(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目