题目内容
已知向量
=(2cosωx,1),
=(sinωx+cosωx,-1),(ω∈R,ω>0),设函数f(x)=
•
(x∈R),若f(x)的最小正周期为
.
(1)求ω的值;
(2)求f(x)的单调区间.
| a |
| b |
| a |
| b |
| π |
| 2 |
(1)求ω的值;
(2)求f(x)的单调区间.
f(x)=
•
=2cosωx•(sinωx+cosωx)-1
=sin2ωx+1+cos2ωx-1=
sin(2ωx+
)
(1)由T=
=
?ω=2.
(2)以下均有k∈Z
令-
+2kπ≤4x+
≤
+2kπ?x∈[
-
,
+
]
令
+2kπ≤4x+
≤
+2kπ?x∈[
+
,
+
]
所以函数的单调递增区间为[
-
,
+
],单调递减区间为[
+
,
+
]
| a |
| b |
=sin2ωx+1+cos2ωx-1=
| 2 |
| π |
| 4 |
(1)由T=
| 2π |
| 2ω |
| π |
| 2 |
(2)以下均有k∈Z
令-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| kπ |
| 2 |
| 3π |
| 16 |
| kπ |
| 2 |
| π |
| 16 |
令
| π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| kπ |
| 2 |
| π |
| 16 |
| kπ |
| 2 |
| 5π |
| 16 |
所以函数的单调递增区间为[
| kπ |
| 2 |
| 3π |
| 16 |
| kπ |
| 2 |
| π |
| 16 |
| kπ |
| 2 |
| π |
| 16 |
| kπ |
| 2 |
| 5π |
| 16 |
练习册系列答案
相关题目