题目内容

已知:a,b均为正数,,则使a+b≥c恒成立的c的取值范围是( )
A.(-∞,]
B.(0,1]
C.(-∞,9]
D.(-∞,8]
【答案】分析:由题意知,要使a+b≥c恒成立,即a+b的最小值≥c,利用均值不等式求解即可.
解答:解:∵a,b均为正数,
∴a+b=(a+b)×=(5+)≥(5+2)=
当且仅当,即b=2a时,取等号;
∴a+b的最小值是
由题意可知c
故选A.
点评:本题通过恒成立问题的形式,考查了均值不等式,灵活运用了“2”的代换,是高考考查的重点内容.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网