题目内容

已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则y=f(x)的值域为______.
[1,]
∵f(x)=ax2+bx+3a+b是偶函数,
∴其定义域[a-1,2a]关于原点对称,
∴即a-1=-2a,∴a=
∵f(x)=ax2+bx+3a+b是偶函数,
即f(-x)=f(x),∴b=0,
∴f(x)=x2+1,x∈[-],其值域为{y|1≤y≤}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网