题目内容

设函数f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,若方程f(x)=t在[-
12
,1]
上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m
分析:(Ⅰ)求导数,再利用导数大于0,求函数的单调区间;(Ⅱ)由(Ⅰ)知,f(x)在[-
1
2
,0]
上单调递增,在[0,1]上单调递减可得解(Ⅲ)根据要证明的结论,利用分析法来证明本题,从结论入手,要证结论只要证明后面这个式子成立,两边取对数,构造函数,问题转化为只要证明函数在一个范围上成立,利用导数证明函数的性质.
解答:解:(Ⅰ)f′(x)=1-aln(x+1)-a
①a=0时,f′(x)>0∴f(x)在(-1,+∞)上是增函数    …(1分)
②当a>0时,f(x)在(-1,e
1-a
a
-1]
上递增,在[e
1-a
a
-1,+∞)
单调递减.…(4分)
(Ⅱ)由(Ⅰ)知,f(x)在[-
1
2
,0]
上单调递增,在[0,1]上单调递减
f(0)=0,f(1)=1-ln4,f(-
1
2
)=-
1
2
+
1
2
ln2

f(1)-f(-
1
2
)<0

∴当t∈[-
1
2
+
1
2
ln2,0)
时,方程f(x)=t有两解   …(8分)
(Ⅲ)要证:(1+m)n<(1+n)m只需证nln(1+m)<mln(1+n),
只需证:
ln(1+m)
m
ln(1+n)
n

g(x)=
ln(1+x)
x
,(x>0)
,则g/(x)=
x
1+x
-ln(1+x)
x2
=
x-(1+x)ln(1+x)
x2(1+x)
…(10分)
由(Ⅰ)知x-(1+x)ln(1+x),在(0,+∞)单调递减    …(12分)
∴x-(1+x)ln(1+x)<0,即g(x)是减函数,而m>n
∴g(m)<g(n),故原不等式成立.          …(14分)
点评:考查不等式的证明,考查化归思想,考查构造函数,是一个综合题,题目难度中等,在证明不等式时,注意采用什么形式,选择一种合适的写法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网