题目内容
(2012•南充三模)已知Sn是数列{
}的前n项和,则
Sn等于( )
| 1 |
| n2+3n+2 |
| lim |
| n→∞ |
分析:由
=
=
-
,利用裂项可求Sn,进而可求极限
| 1 |
| n2+3n+2 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:解:∵
=
=
-
∴Sn=
-
+
-
+…+
-
=
-
Sn=
(
-
)=
故选B
| 1 |
| n2+3n+2 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
故选B
点评:本题主要考查了裂项求解数列的和及数列极限的求解,属于基础试题
练习册系列答案
相关题目