题目内容

(2012•南充三模)已知Sn是数列{
1
n2+3n+2
}的前n项和,则
lim
n→∞
Sn
等于(  )
分析:
1
n2+3n+2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,利用裂项可求Sn,进而可求极限
解答:解:∵
1
n2+3n+2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

Sn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=
1
2
-
1
n+2

lim
n→∞
Sn=
lim
n→∞
(
1
2
-
1
n+2
)
=
1
2

故选B
点评:本题主要考查了裂项求解数列的和及数列极限的求解,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网