题目内容
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积 |
|
|
|
|
|
管理时间 |
|
|
|
|
|
并调查了某村
名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 |
|
|
女性村民 |
|
求出相关系数
的大小,并判断管理时间
与土地使用面积
是否线性相关?
若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取
人,记取到不愿意参与管理的男性村民的人数为
,求
的分布列及数学期望.
参考公式:
,参考数据:
,
,![]()
【答案】![]()
,管理时间
与土地使用面积
线性相关;
分布列见解析,
.
【解析】
![]()
,
,
故
,
,
,
进而求出
,即可得出结论;
![]()
的可能取值为
,
,
,
,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为
,由此能求出
的分布列及数学期望.
解:
依题意:
,![]()
故![]()
,![]()
则
,
故管理时间
与土地使用面积
线性相关.
依题意,
的可能取值为
,
,
,
,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为
,
故
,
,
,
.
故
的分布列为
|
|
|
|
|
|
|
|
|
|
则数学期望为![]()
(或由
,得
)
【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)
(1)A类工人中和B类工人各抽查多少工人?
(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:
表1:
生产能力分组 |
|
|
|
|
|
人数 | 4 | 8 | x | 5 | 3 |
表2:
生产能力分组 |
|
|
|
|
人数 | 6 | y | 36 | 18 |
①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)
![]()
图1A类工人生产能力的频率分布直方图 图2B类工人生产能力的频率分布直方图