题目内容

双曲线上一点P对两焦点F1F2的视角为60°,则△F1PF2的面积为(  )

A.2                 B.3                 C.6                 D.9

解析:由双曲线的定义,得||PF1|-|PF2||=8,

两边平方,得

|PF1|2+|PF2|2-2|PF1||PF2|=64,                                                              ①

由余弦定理,得|PF1|2+|PF2|2-2|PF1|·|PF2|·cos?0°=100,                           ②

联立①②两式,可得|PF1||PF2|=36,

所以SF1PF2=|PF1||PF2|sin60°=9.

答案:D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网