题目内容
设n阶方阵,
【答案】分析:取x1=1,x2=2n+3,x3=4n+5,由题设条件可知Sn=1+(2n+3)+(4n+5)+…+(2n2-1)=n3+n2,由此能够导出
的值.
解答:解:不妨取x1=1,x2=2n+3,x3=4n+5,故
Sn=1+(2n+3)+(4n+5)+…+(2n2-1)
=[1+3+5+…+(2n-1)]+[2n+4n+…+(n-1)2n]
=n2+(n-1)×n2
=n3
故
=
=
=1,
答案:1.
点评:本题考查高阶矩阵和数列的极限,解题时要认真审题,仔细解答,避免不必要的错误.
解答:解:不妨取x1=1,x2=2n+3,x3=4n+5,故
Sn=1+(2n+3)+(4n+5)+…+(2n2-1)
=[1+3+5+…+(2n-1)]+[2n+4n+…+(n-1)2n]
=n2+(n-1)×n2
=n3
故
答案:1.
点评:本题考查高阶矩阵和数列的极限,解题时要认真审题,仔细解答,避免不必要的错误.
练习册系列答案
相关题目