题目内容

已知f1(x)=
x-1
x+1
,对任意n∈N*,恒有fn+1(x)=f1[fn(x)],则f2014(2013)=(  )
分析:由条件求得则f2(x)=
-1
x
,f3(x)=
1+x
1-x
,f4(x)=x,f5=f1[f4(x)]=f1(x),故fn(x)是以4为周期的周期函数再根据f2014(2013)=f2(2013),运算求得结果.
解答:解:已知f1(x)=
x-1
x+1
,对任意n∈N*,恒有fn+1(x)=f1[fn(x)],则f2(x)=f1[f1(x)]=
f1(x)-1
f1(x)+1
=
x-1
x+1
-1
x-1
x+1
+1
=
-1
x

f3(x)=f1[f2(x)]=
f2(x)-1
f2(x)+1
=
-1
x
-1
-1
x
+1
=
1+x
1-x
,f4(x)=f1[f3(x)]=
f3(x)-1
f3(x)+1
=
x+1
1-x
-1
x+1
1-x
+1
=x,
f5=f1[f4(x)]=
f4(x)-1
f4(x)+1
=
x-1
x+1
=f1(x),故fn(x)是以4为周期的周期函数,
故f2014(2013)=f2(2013)=
-1
2013

故选D.
点评:本题主要考查利用函数的周期性求函数的值,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网