题目内容
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的一个焦点是抛物线 y2=8x的焦点,且双曲线C 的离心率为2,那么双曲线C 的方程为${x}^{2}-\frac{{y}^{2}}{3}=1$.分析 利用抛物线的标准方程y2=8x,可得焦点为(2,0).进而得到c=2.再利用双曲线的离心率的计算公式可得$\frac{c}{a}$=2得到a=1,再利用b2=c2-a2可得b2.进而得到双曲线的方程.
解答 解:由抛物线y2=8x,可得其焦点为(2,0).
由题意双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的一个焦点是抛物线 y2=8x的焦点,∴c=2.
又双曲线的离心率为2,∴$\frac{c}{a}$=2,得到a=1,∴b2=c2-a2=3.
∴双曲线的方程为${x}^{2}-\frac{{y}^{2}}{3}=1$.
故答案为:${x}^{2}-\frac{{y}^{2}}{3}=1$.
点评 本题考查双曲线的性质与方程,考查抛物线的性质,熟练掌握双曲线抛物线的标准方程及其性质是解题的关键.
练习册系列答案
相关题目
7.过抛物线y2=2px(p>0)的焦点F的直线l,依次分别交抛物线的准线、y轴、抛物线于A、B、C三点.若$\overrightarrow{{A}{B}}=2\overrightarrow{{B}C}$,则直线l的斜率是( )
| A. | $-\sqrt{2}$或$\sqrt{2}$ | B. | -2或2 | C. | $-2\sqrt{2}$或$2\sqrt{2}$ | D. | -4或4 |
8.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{c}$|,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
6.圆(x-a)2+y2=1与直线y=x相切于第三象限,则a=( )
| A. | -2 | B. | 2 | C. | $-\sqrt{2}$ | D. | $\sqrt{2}$ |