题目内容
【题目】在平面直角坐标系xOy中,己知椭圆C:
的左、右顶点为A,B,右焦点为F.过点A且斜率为k(
)的直线交椭圆C于另一点P.
![]()
(1)求椭圆C的离心率;
(2)若
,求
的值;
(3)设直线l:
,延长AP交直线l于点Q,线段BO的中点为E,求证:点B关于直线EF的对称点在直线PF上。
【答案】(1)
(2)
(3)详见解析
【解析】
(1)根据椭圆的方程,结合椭圆离心率的求法,即可求出结果;
(2)先由题意,得到直线AP的方程为
代入椭圆方程,求出点P的坐标,表示出
与
,进而可得出结果;
(3)由直线AP的方程与直线l的方程联立,求出
,表示出直线EF的斜率,再由
结合韦达定理,以及题中条件,表示出直线PF的斜率,再由题意,即可证明结论成立.
(1)因为椭圆C:
,
所以
,
,
.
又
,所以
,
,
所以椭圆C的离心率
.
(2)因为直线AP的斜率为
,且过椭圆C的左顶点
,
所以直线AP的方程为
.
代入椭圆C的方程
,
得
,即
,
解得
或
(舍去),
将
代入
,得
,
所以点P的坐标为
.
又椭圆C的右顶点B(2t,0),
所以
,
,
所以
.
(3)直线AP的方程为
,
将
代入
,得
,所以
.
因为E为线段BQ的中点,所以
,
因为焦点F的坐标为(t,0),
所以直线EF的斜率
.
联立
消y得,
.
由于
,
,
所以
,
所以点P的坐标为
,
所以直线PF的斜率
.
而直线EF的斜率为2k,
若设
,则有
,即
,
所以点B关于直线EF的对称点在直线PF上.
练习册系列答案
相关题目