题目内容
在数列{an}中,已知a1=-2,an+1=-
;bn=
,n∈N*.
(Ⅰ)求b1,b2及bn;
(Ⅱ)求证:
<2.
| 2an+12 |
| an+5 |
| 1 |
| an+3 |
(Ⅰ)求b1,b2及bn;
(Ⅱ)求证:
| n |
| k=1 |
| 1 |
| bk |
分析:(Ⅰ)先由an+1=-
求得a2,再由bn=
可求得b1,b2,由bn=
可得bn+1与bn的递推式,由该递推式可构造等比数列{bn+1},从而可求得bn+1,进而得到bn;
(Ⅱ)由
=
,知n≥2时,
=
=
<
,据此对不等式进行放缩可证明,注意检验n=1时情形;
| 2an+12 |
| an+5 |
| 1 |
| an+3 |
| 1 |
| an+3 |
(Ⅱ)由
| 1 |
| bn |
| 1 |
| 2n-1 |
| 1 |
| bn |
| 1 |
| 2n-1 |
| 1 |
| 2n-1+2n-1-1 |
| 1 |
| 2n-1 |
解答:解:(Ⅰ)∵a1=-2,∴a2=-
=-
=-
,
∴b1=
=
=1,b2=
=
=3,
∵bn+1=
=
=
=1+
=2bn+1,
∴bn+1+1=2(bn+1),
于是{bn+1}是以b1+1=2为首项,2为公比的等比数列,
故bn+1=2×2n-1=2n,即bn=2n-1;
(Ⅱ)∵
=
,
∴当n≥2时,
=
=
<
,
∴
<1+
+
+…+
=1+
=2-(
)n-1<2;
n=1时,
=1<2成立,
∴
<2.
| 2a1+12 |
| a1+5 |
| -4+12 |
| -2+5 |
| 8 |
| 3 |
∴b1=
| 1 |
| a1+3 |
| 1 |
| -2+3 |
| 1 |
| a2+3 |
| 1 | ||
-
|
∵bn+1=
| 1 |
| an+1+3 |
| 1 | ||
-
|
| an+5 |
| an+3 |
| 2 |
| an+3 |
∴bn+1+1=2(bn+1),
于是{bn+1}是以b1+1=2为首项,2为公比的等比数列,
故bn+1=2×2n-1=2n,即bn=2n-1;
(Ⅱ)∵
| 1 |
| bn |
| 1 |
| 2n-1 |
∴当n≥2时,
| 1 |
| bn |
| 1 |
| 2n-1 |
| 1 |
| 2n-1+2n-1-1 |
| 1 |
| 2n-1 |
∴
| n |
| k=1 |
| 1 |
| bk |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
=1+
| ||||
1-
|
| 1 |
| 2 |
n=1时,
| 1 |
| b1 |
∴
| n |
| k=1 |
| 1 |
| bk |
点评:本题考查数列递推式求数列通项、数列与不等式,考查学生分析解决问题的能力,解决(Ⅱ)问的关键是利用放缩对数列进行求和.
练习册系列答案
相关题目