题目内容

已知圆x2+y2+mx-数学公式=0与抛物线y=数学公式的准线相切,则m的值等于


  1. A.
    ±数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    ±数学公式
D
分析:由抛物线的方程找出P,写出抛物线的准线方程,因为准线方程与圆相切,所以圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于m的方程,求出方程的解即可得到m的值.
解答:由抛物线的方程得到p=2,所以抛物线的准线为y=-=-1,
将圆化为标准方程得:+y2=,圆心坐标为(-,0),圆的半径r=
圆心到直线的距离d==1=r=
化简得:m2=3,解得m=±
故选D
点评:此题考查学生会求抛物线的准线方程,掌握直线与圆相切时所满足的条件,灵活运用点到直线的距离公式化简求值,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网