题目内容
(本小题满分12分)设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.(I)求a,b的值;(II)证明:≤2x-2.
设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.
(1)求a,b的值;
(2)证明:≤2x-2.
(13分)设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;(II)证明:≤2x-2.
(本小题满分12分)
设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;
(II)证明:f(x)≤2x-2。
(II)证明:≤2x-2.