题目内容
等差数列{an}中,a3=8,a7=20,若数列{
}的前n项和为
,则n的值为( )
| 1 |
| anan+1 |
| 4 |
| 25 |
| A.14 | B.15 | C.16 | D.18 |
设等差数列的首项为a,公差为d,
因为a3=8,a7=20,所以a+2d=8,a+6d=20,解得a=3,a=2.an=3n-1;
又因为
=
=
(
-
),
所以Sn=
(
-
+
-
+
-
+…+
-
)
=
(
-
)=25,解得n=16
故选C
因为a3=8,a7=20,所以a+2d=8,a+6d=20,解得a=3,a=2.an=3n-1;
又因为
| 1 |
| an•an+1 |
| 1 |
| (3n-1)(3n+2) |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
所以Sn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 11 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n+1 |
故选C
练习册系列答案
相关题目