题目内容

(2013•闸北区一模)设函数f(x)=
x•2x,x≥0
x-2,x<0.
则方程f(x)=x2+1有实数解的个数为
2
2
分析:方程f(x)=x2+1的实数解的个数问题转化为图象的交点问题,作图分析即得答案.
解答:解:画出f(x)=
x•2x,x≥0
x-2,x<0.
与y=x2+1的图象,有两个交点,

故方程f(x)=x2+1的实数解的个数为2个.
故答案为:2.
点评:华罗庚曾说过:“数缺形时少直观,形缺数时难入微.数形结合百般好,隔离分家万事非.”数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网