题目内容
已知函数f(x)=x3-9x2cosα+48xcosβ+18sin2α,g(x)=f'(x),且对任意的实数t均有g(1+cost)≥0,g(3+sint)≤0.
(I)求函数f(x)的解析式;
(II)若对任意的m∈[-26,6],恒有f(x)≥x2-mx-11,求x的取值范围.
(I)求函数f(x)的解析式;
(II)若对任意的m∈[-26,6],恒有f(x)≥x2-mx-11,求x的取值范围.
(1)g(x)=f'(x)=3x2-18xcosα+48cosβ
对任意的实数t,1+cost∈[0,2],3+sint∈[2,4].
对任意的实数t有g(1+cost)≥0,g(3+sint)≤0
即对任意的实数x∈[0,2]有g(x)≥0,x∈[2,4]时有g(x)≤0
∴
即
,解得
所以f(x)=x3-9x2+24x
(2)令g(m)=f(x)-x2+mx+11=xm+x3-10x2+24x+11
由题意只要
即
,解得
对任意的实数t,1+cost∈[0,2],3+sint∈[2,4].
对任意的实数t有g(1+cost)≥0,g(3+sint)≤0
即对任意的实数x∈[0,2]有g(x)≥0,x∈[2,4]时有g(x)≤0
∴
|
|
|
所以f(x)=x3-9x2+24x
(2)令g(m)=f(x)-x2+mx+11=xm+x3-10x2+24x+11
由题意只要
|
|
|
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|