题目内容
13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )
| A. | 0.852 | B. | 0.8192 | C. | 0.8 | D. | 0.75 |
分析 由题意知,在20组随机数中表示种射击4次至少击中3次的有多少组,可以通过列举得到共多少组随机数,根据概率公式,得到结果.
解答 解:由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示射击4次至少击中3次的有:
7527 0293 9857 0347 4373 8636 9647 4698
6233 2616 8045 3661 9597 7424 4281,共15组随机数,
∴所求概率为0.75.
故选:D.
点评 本题考查模拟方法估计概率、随机数的含义与应用,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.
练习册系列答案
相关题目
18.在等差数列{an}中,${a_1}=\frac{1}{25}$,第10项开始比1大,记$t=\lim_{n→∞}\frac{{{a_n}+{S_n}}}{n^2}$,则t的取值范围是( )
| A. | $t>\frac{4}{75}$ | B. | $\frac{8}{75}<t≤\frac{3}{25}$ | C. | $\frac{4}{75}<t<\frac{3}{50}$ | D. | $\frac{4}{75}<t≤\frac{3}{50}$ |
3.
如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE,BE,∠APE的平分线分别与AE、BE相交于C、D,若∠AEB=30°,则∠PCE等于( )
| A. | 150° | B. | 75° | C. | 105° | D. | 60° |